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Finite difference methods for solving problems of time-harmonic
acoustics are developed and analyzed. Multi-dimensional inhomo-
geneous problems with variable, possibly discontinuous, coeffi-
cients are considered, accounting for the effects of employing non-
uniform grids. A weighted-average representation is less sensitive
to transition in wave resolution {due to variable wave numbers
or non-uniform grids) than the standard pointwise representation.
Further enhancement in method performance is obtained by basing
the stencils on generalizations of Pade approximation, or general-
ized definitions of the derivative, reducing spurious dispersion, an-
isotropy, and reflection, and by improving the representation of
source terms. The resulting schemes have fourth-order accurate
local truncation error on uniform grids and third order in the non-
uniform case, Guidelines for discretization pertaining to grid orienta-
tion and resolution are presented.  © 1995 Academic Press, inc.

1. INTRODUCTION

Boundary-value problems governed by the Helmholtz equa-
tion model propagation and evapescence of time-harmonic
waves, describing a variely of physical phenomena, including
acoustic, clastic and eleciromagnetic waves. When the wave-
length is of the same order as characteristic length scales asymp-
totic methods usually cannot be employed and stundard numeri-
cal methods such as boundary element, finite element or linite
difference methods are often required.

Finite difference methods are a prevalent computational tech-
nique that applies to variable coefficient as well as to nonlinear
problems. A general framework for deriving higher-order finite

* This rescarch was supported by the National Aeronautics and Space Admin-
istration under NASA Contract NAS 1-19480 while the authors were in resi-
dence at the Institute for Computer Applications in Science and Engineering
{ICASE), NASA Langley Research Center. Hampton, VA 23681, The first
author was afso supported by the Center for Absorption in Science, Ministry
of Immigrant Absorption, State of Israel.

difference schiemes was proposed by Lynch and Rice for ordi-
nary differential equations |1] and elliptic partial differential
equattons {2], and applied to the Helmholtz equation [3]. The
coefficients of the stencil in this method are computed by solv-
ing a local system of equations so that it is exact on a given
space of polynomials. This is repeated at every grid point at
which the solution is unknown, contributing to the cost of
computation. Accuracy is further enhanced by judiciously se-
lecting the points at which source terms are evaluated and
computing their coefficients in the same way.

A family of linite difference schemes with improved repre-
sentation of a range of wave numbers is presented and analyzed
in [4]. Tam and Webb [5] optimize the dispersion properties
of higher-order finite difference discretization of the linearized
Euler equations. In this approach the order of accuracy of a
stencil is allowed to drop, freeing a parameter that is then
designed to improve dispersion response.

Finite difference cquations can be obtained by replacing the
linit that defines the derivative with a finite counterpart. The
famtliar definition of the derivative may be generalized by
introducing a resolution-dependent parameter leading o im-
proved performance ol the diserete methods, As Tong as the
limit behavior is unaltered. consisiency of the approximalion
is retiined. This idea was introduced by Mickens and employed
as & mecans of gencrating stable finite difference schemes on
uniform grids for several differential equations in one spatial
dimension ([6, 7] and references therein). Similar discrete equa-
tions are obtained by new classes of finite element methods for
a variety of applications, including wave propagation {e.g., [§]
and references therein). It should be noted that analysis of the
computation of waves [9] indicates that accuracy depends not
only on the product of wave number and grid size (related to
resolution), but also on product of other powers of these quan-
tities. .

In this work we apply generalizations of the definition of
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ACCURATE FINITE DIFFERENCE METHODS

the derivative and of Padé approximation to finite difference
stencils for the Helmholtz equation in order to obtain improved
dispersion behavior. Contrary to HODIE methods, the coeffi-
cients are obtained explicitly. Multi-dimensional inhomoge-
neous problems with variable, possibly discontinuous, coeffi-
cients are considered, accounting for the effects of employing
non-uniform grids. Several finite difference stencils in one, two,
and three dimensions are presented in Section 2. The analysis
of the numerical methods gradually builds up to the general
case. Performance of the various formulations for homogeneous
problems with constant coefficients on uniform grids is exam-
ined by dispersion analysis in Section 3. This tool is employed
to define the resolution-dependent parameter for improved per-
formance. In Section 4 the effect of the direction of wave
propagation relative to grid lines is accounted for. The effects
of non-uniform grids and discontinuities in physical properties
are investigated in Section 5. Standard finite difference methods
are often not well suited for interface problems (see, e.g., [10,
pp. 17-211). However, appropriate representation preserves the
order of accuracy of the continuous-coefficient and even the
constant-coefficient case. (Issues related to curved interfaces,
as well as curved domain boundaries are not treated herein.}
The results of these analyses are corroborated by means of
local truncation error analysis in Section 6, accounting also for
the effects of source terms.

2. DISCRETE FORMULATIONS

The Helmholtz equation is

Ad + k¢ + f=0, (1)
where k = w/c¢, is the wave number, @ is the angular frequency,
¢, is the speed of sound, and f is a given source distribution.
Although not explicitly addressed in the following, the case of
k* < 0 which corresponds to evanescent waves or singular
diffusion problems is also covered. An inhomogeneous medium
is represented by spatial variations in k(x).

2.1. One Dimension

Consider a uniform grid of size h with points at x; = jh.

2.1.1. Pointwise Representation

A typical starting point is based on the standard finite differ-
ence stencil for the second derivative

D= =2t b @

and pointwise (pT) representation of undifferentiated terms

D.¢ + By + £, =0, 3)
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where ¢, is the discrete solution at point j and f; = f(x;). On a
non-uniform grid this generalizes to

b= _ b ) /5 -
( o = )/h+k2¢,+fj_o, )

where A~ and A" are the grid size before and after point j,
respectively, and A = (A" + h7)/2. For a discontinuity in
physical properties at point j the stencil becomes

b =& H— o\ [ VR VR —
( h h )/h+ 2h HTh=0.

&)

where £~ and £* are the wave numbers before and after point
J, respectively. These may be also considered as piecewise-
constant approximations of variable coefficients.

2.1.2. Weighted-Average Representation

The undifferentiated terms may be represented by a weighted
average {(wa) suggested by linear finite elements (with
piecewise linear approximation of the source distribution; see,
e.g., [11, pp. 45-46]):

D¢

iy 2 ¢j+1 + 464’)1 + qbf‘] +fl+l + 46ff +fi" =0, (6)

This scheme has the same asymptotic behavior as the pointwise
representation, but improvement in performance on coarse grids
is evident (see Section 3). For variable coefficients this becomes

By + 4Gy + (RB)y | fion Ay o

D.U¢j 6 6 = 0,
(7
where (k’¢); = k*(x)d;.
On a non-uniform grid the appropriate weighting is
G —d b ‘bj-l)/ﬁ
i h™
R h™
+< (7 (i +24) + Q2+ ¢u)) (8)

1k h-
+ 5 (—E— (fin +2f) + f(sz +ﬁ1)) =0

Superior performance on non-uniform grids (see Section 5) is
attained with no increase in the number of points in the stencil.
For a discontinuity in physical properties at point j the sten-
cil becomes
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G b GG /5
( " " )/h

+l((k )Zth
6

(1 + 2 + L7 k )2},_

QQ+@O) )
| {ht h™ -
+ 8 (7 (fim +2f) + T(Zf; +J§'-l)) =0

Again, this may also be considered as a piecewise-constant
approximation of the case of variable coefficients.

Performance of finite difference schemes for the Helmholtz
equation may be enhanced by basing the stencils on more
general definitions of the derivative

d¢ Plx + 1) — $x)
elx Lo Blkhy h (10)
where, for consistency
limg = 1. (11)
kh—0

This definition depends on k#, an indication of wave resolution
by the grid. For the Laplacian this reduces to the standard
definition for grids of any size.

This generalization of the derivative definition may be ap-
plied for either the first or second derivatives, or to both. On
uniform grids all are equivalent. Since the parameter depends
on the grid size it is applicable to non-uniform grids as well.
Superior performance on non-uniform grids is obtained by
applying this concept to the second derivative alone (see Section
5). For the uniform case this reduces to
b — 24+ &
Br?

% din +4d + &y
6

(12)
WAL A

6 ={.

2.1.3. Exact-Phase Representation

The resolution-dependent parameter 8 is defined to improve
method performance. For example, the parameter may be de-
fined to eliminate numerical dispersion

6 1 — cos{kh)
(kh)’ 2 + cos(kh)

B= (13)

s0 that in simplified settings the phase is exact (EP), resulting
in no truncation error under some circurnstances. This definition
satisfies the consistency requirement (11). In such cases the
representation of source terms, which is exact for piecewise
linear variation, is no longer sufficiently accurate. A modifica-
tion of the representation of source terms that does not degrade
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the higher-order accuracy of such schemes, similar 1o that em-
ployed by HODIE methods [2], is

By — 24+ e b T4+ by
BH: 6

yhe*hit fiom
3

(14}
=0

(suggested by linear finite elements with piecewise quadratic
approXimation of the source distribution), where f.» is the
load term evaluated at the midpoint. For a piecewise linear
source distribution this is identical to (12).

2.1.4. Higher-Order Representation

One possibility of the parameter

12
= 5
A 12 — (kh)? 1%
yields high-order representation
10+ b, fan+f S
Dud, + K i1 1(1359, ¢ 1+ﬁ+uz g- 5 2 _ 0 (16)

{Ho). This stencil {(without the modification in the representation
of spurce terms) may also be derived by employing Padé ap-
proximation

D

1+ W/12D,, (7

¢+ ki +£i=0

(see, e.g., [12, p. 538]).

This concept, in its original form, which may be viewed as
an average of the pointwise and weighted-average representa-
tions of the undifferentiated term [13], provides high-order
performance on uniform grids, but severely degrades in the
non-uniform case. However, an appropriate generalization to
non-uniform grids, based on the concept of generalizing the
derivative definition, leads to improved performance in the
general case as well (see Sections 5 and 6). Allowing disconti-
nuities in physical coefficients and accounting for non-uniform
grids the proposed scheme is

¢_,l+l ¢J ¢J (hu]
( W 5 )/ ph

(k+ 2B+h+ (k )2B h_
+ = 6 ( 7 (o T 2¢) +—F%— Bh —=02¢+ 4’,‘—1))
BH* -3
( E’- Qe+ H + = Bh (f + 2f- 1.'2)) 0, (18)

where 8% = B(k*h*) and Bh = (B*h* + B k)2
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2.2. Two Dimensions

Consider a two-dimensional uniform grid of size & with
points at x; = ih and y; = jh. For simplicity we consider
the homogeneous case. A typical starting point is the five-
point representation

D:xqbrlj + D)‘y iJ + ki[t'if
_ ¢)E+I.j - 2¢’¢'.j + d’:—l,j + ¢i.j+l - zd)i.j + d-’:'.j—l
g R

(19)

+ Ky =0

which is the two-dimensional analog of (3). Non-uniform grids
and material discontinuities may be accounted for by general-
izations of (4} and (5).

The two-dimensional counterpart of the idea that leads to
(6), obtained by employing bilinear finite elements, is a nine-
point representation

20+ 20 — 164, &2
L z; 6¢‘-’+%(UC+4UI+16¢,;,,)=0, 20)

where

a. = ¢'f+l,j+1 + ¢f—1J+1 + ¢H~l,,i—l + QSrlJ-l

is the sum of the values at the corner points and

g, = Q5i,'+| + ¢|‘+IJ + d’i—u + ¢i‘j-l

is the sum of the values at the mid-side points, leading to a
significant reduction in spurious anisotropy (see Section 4).
HODIE methods [2] also employ nine-point stencils in two
dimensions. The bandwidth of the ensuing linear algebra prob-
lem is typically slightly larger than that of five-point sten-
cils but the difference in the cost of computation is insig-
nificant.

Performance can again be improved by substituting 4 for
k as in the one-dimensional case (14), based on the same defini-
tions (13} and (15), although the methods are higher order only
for propagation along grid lines.

In order to maintain higher-order performance on uniform
grids in two dimensions in all directions of propagation, the
Padé approximation concept is employed. The two-dimensional
counterpart of (17} is

D,
1 + (W12)D,,

D,
1+ (R/12)D,,

b + b, + K, =0. (21

This may be generalized to
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B K
(1 + ED”.) Dy + (1 + EDH) Dy

(22)
2 L D.+ D))+ —h4DD) 0
+ + =
k l 12( xx yy) ‘Y144 Ay qbu ?

where v is selected to further improve properties in directions
other than along grid lines, without effecting dispersion along
grid lines and without degrading higher-order behavior in all di-
rections.

The standard Padé approximation is obtained by selecting
¥ = 1 which yields the scheme

2 2
Do+ D, + h—DMDyV b, + X (6. + 100, + 100¢,,) = 0,
"6 . 144
(23)
where
2 .+ 4o, — 204,
(DU +D, + %DHDW) b= %ﬂ. (24)

Neglecting higher-order terms in the Padé approximation by
selecting -y = 0 leads to the slightly simplified stencil presented
in [12, p. 542]

2 2
(DH +D,+ %DMD_,T,) dy, + f—z (o, +8d,;)=0. (25)

The computational cost is essentially unaffected since the band-
width of the algebraic equations is identical. Another alternative
presented in [12, p. 542] is

2 z
(Du + D, + % D,JDW) &;; + % (o, + 4o, +524:) =0,

(26)

obtained by selecting y = 2.
Other values for 7y lead to other alternatives. In Section 4 it
is seen that selecting vy = %, which leads to the stencil

h? k*
(Dxx + Dyy + EDI.IDW) ¢'ij + ﬁ (o-c + 280-5 + 244¢u) =0
(27

minimizes dispersion along the diagonals. On the other hand,

reducing sensitivity of the scheme to direction of propagation

is attained by the choice of ¥ = ¥, which yields the stencil
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R?
(DJDt +D,+ gDqu) b,

(28)

k2
+ —_— L) =
6 (7o, + 160, + +268¢,,) =0

All these alternatives reduce to (Ho) in one dimension. Thus
the dispersion analysis for (Ho) in Section 3 describes the
dispersion of all alternatives along grid lines. In Section 4
the performances of various alternatives in other directions
are compared.

2.3. Three Dimensions

In many practical applications three-dimensional formulas
are needed. Consider a three-dimensional uniform grid of size
h with points at x; = ik, y; = jh, and z, = kh (the distinction
between the index k and the wave number should be clear from
the context). Again we consider the homogeneous case. We
proceed directly to the three-dimensional counterpart of (17),

D, s D, s
1 + (R12)D,, kT T h2/12D bk
PN 2 Sy )
1+ R2)D, Lik =

based on the concept of Padé approximation, to maintain higher-
order performance on uniform three-dimensional grids in all
directions of propagation. This may again be generalized to

h2 ht
(14201 + ) s
h? I
+ 1+EDH l+12D Doy

h? X
+l1+= +=
( 127 )(1 12

2
+k2(1 +%(DH+D_W+DX)

AT

yy) D, (!bf.j-k
(30)

(D D+ DD, + D.D.)

h®
+ 60—
1728

D.D,D, ) Pijn = 0,

where y and & are selected to further improve properties in
directions other than along grid lines, without effecting disper-
sion along grid lines and without degrading higher-order behav-
ior in all directions. This scheme reduces to (Ho) in one dimen-
sion for all values of the parameters. Thus the dispersion
analysis for (Ho) in Section 3 describes dispersion along grid
lines. In Section 4 the performance in other directions is studied,
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and it is shown that selecting v = ¥ (as in two dimensions)
and § = 17 reduces sensitivity of the scheme to direction
of propagation.

3. SPURIOUS DISPERSION

A homogeneous, isotropic continvum is non-dispersive.
Waves travel at a phase velocity

w
G =3 T G 30
and energy propagates at the group velocity
Jw
Cpi= a5 G (32)

and so both are identical.

For the discrete representation this is usually no longer the
case. Each stencil can be characterized by an approximate wave
number &" = k*(kk), which depends on wave resolution and
thus accounts for numerical dispersion. The phase velocity in
the discrete case is

(33)

and the numerical group velocity is

PR

e ok

_ dw ak
T ok ok

akh -1
= Ek_ Co.

On a uniform grid in one dimension a numerical solution in
the form of a plane wave is

(34)

& = (exp(ek"h)Y, (35)
where ¢ = V' —1 is the imaginary unit, so that
— 2 k
D¢, = W (cos(kh)y — 1) ¢y, (36)

PT. For point j the pointwise representation (3} of the plane
wave solution yields
2cos(k™h) — 1) + (kh)* = (37

leading to the dispersion relation for a plane wave
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k*h = arc cos(1 — (kh)*/2)

. (38)
== kh + (khY’ 124 + 3(kh)'/640.

In one dimension the number of grid points in a wave is

G = 2u/(kh). (39)
The discrete solution represents propagation in the range kh <
2 which corresponds to a limit of approximately three grid
points per wavelength. Within this range the numerical phase
velocity is thus

cilcy = khfarc cos(l — (kh)*/2) {40)
and the numerical group velocity is
chleg = V1 — (khY/4. 4D

Both are slower than the speed of sound in the material ¢;.
WA. Similarly, for the weighted-average representation {6)
the dispersion relation is

. 2
k*h = arc cos (LM>

1 + (kh)*/6 (42)

~ ki — (kh)'124 + 3(kh) /640,

representing propagation in the range kb < V12, a limit of
approximately two grid points per wavelength. Within this
range the numerical phase velocity is obtained directly from
the dispersion relation and the numerical group velocity is

cifey = V1 — (kBY/12(1 + (kR)/6). (43)
Both are faster than the speed of sound in the material.

EP. The resolution-dependent parameter 8 may be defined
so that discrete representations are non-dispersive (13) as is
the case for the continuum. In one dimension this formulation
has zero local truncation error for the homogeneous, constant
coefficient case on uniform grids, and the phase and group
velocities are exact. Careful generalization leads to improved
performance on general configurations.

HO. The higher-order representation (15} is an approxima-

tion of the exact phase definition (13) on uniform grids. The
resulting higher-order dispersion relation

(44)

- 2
k' = arc cos (%1 S(kk) /12)

1+ (k12

is a (1, 1) Padé approximation, representing propagation in the
range kh < V6, a limit of approximately 23 grid points per
wavelength. Within the range the numerical phase velocity is
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again obtained directly from the dispersion relation and the
numerical group velocity is

chifco ="V1 — (ki)*/6(1 + (khy/12). (45)

Both are slower than the speed of sound in the material. The
power series expansion of the dispersion relation

(kh)*
o= kh + =+
¢ k 480

{(kh)’
12006~ ¥ (6)

demonstrates the higher-order nature of this representation.

Dispersion of the various formulations is plotted in Fig. 1.
Note that the region of primary interest is G > 4, a resolution
of at least four grid points per wavelength. Within this region
the errors in the pointwise and weighted-average representa-
tions are similar, and the asymptotic behavior is the same (see
Section 6). However, even approaching the limit of resolution,
and certainly beyond it, the weighted-average performance is
superior. For example, at the limit of resolution (G = 4) there
is a 38% error in the group veloeity for the pointwise representa-
tion, whereas in the weighted-average representation the error
is only 26%. The higher-order method offers significantly su-
perior representation, an error of only 7% in group velocity at
(G = 4, and the exact-phase method provides dispersion-free so-
lutions.

4. SPURIOUS ANISOTROPY

4.1. Two Dimensions

On the uniform grid in two dimensions a numerical solu-
tion in the form of a plane wave oriented at angle 6 to the grid
lines is

¢, = (expl(uk*h cos D) (expl(tk'h sin By, (47
so that the generalization of (36) to two dimensions is
_ 2 k
Dy, = e (cos{k"h cos @) — D)dh;;
{48)

Dby = f_ (cos(k"t sin 8) — 1)eby;.

PT. For point i, j the pointwise representation {(19) of the
plane wave solution yields

2(cos(k"h cos &) — | + cos(k*hsin @) — 1) + (kh)* = 0,
(49)

leading to various dispersion relations, depending on the angle
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FIG. 1. Phase and group velocities of one-dimensional discrete formulations.

of orientation 8. When the wave is aligned with the grid (e.g.,
@ = 0) this leads to the one-dimensional dispersion relation
(38). The other extreme case occurs when the wave is oriented
in the direction of cell diagonals (e.g., 8 = w/4)

k= V2 arc cos(1 — (kh)¥/4)

(50)
~= kh + (khy/48 + 3(kh)*/2560.

The discrete solution represents propagation in the range A
< V8. Within this range the numerical phase velocity is again
obtained directly from the dispersion relation and the numerical

group velocity is
ey =V1 — (kh)¥/8. 51)
Both are slower than the speed of sound in the material. It is

interesting to note that the pointwise representation is more
dispersive when waves are oriented along the grid.

WA, Similarly, for the weighted-average representation (20)
dispersion relations are obtained from
46 — (kD — (12 + (kh)) cos(k"h cos ) cos(k™h sin 0)

— 2(3 + (kh)(cos(k™h cos @) + cos(k"h sin §)) = 0. (52)
When the wave is aligned with the grid this leads to the known

one-dimensional dispersion relation (42) and for waves parallel
to cell diagonals

1 — (kh)H6 )
h —_
k"h = V2 arc cos (hl TR

== kh — (kh)y*148 + 3(kh)*/2560,

(53)

representing propagation in the range &k << V24, Within this
range the numerical phase velocity is obtained directly from
the dispersion relation and the numerical group velocity is
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effco = V1 — (khY2124(1 + (kh)/12) (54)

Both are faster than the speed of sound in the material. The
weighted-average representation is also more dispersive for
waves that are oriented with the grid.

HO. Dispersion relations for the higher-order representation
with 3 defined in (15} at various angles of orientation may be
found in similar fashion. For waves aligned with cell diagonals
the relation 1s identical to that of the pointwise representation
at this angle (50}, and the same holds for the wave velocities.
This reprsentation is thus higher order only for waves oriented
along grid lines.

Representations that are truly higher order in all directions
of propagation are based on (22). For waves aligned with the
grid this leads to the higher-order dispersion relation (44) and
along cell diagonals the relation is

k*h = V2 arc cos
(55)

(6\/ L+ (1 — v/ 144 — (4 + (6 — y)(kh)Z/lz))
2+ y(kh)H 12 :

By examining the power series expansion of this relation

O]

kih = —
ko Gy~ Dze0 o768

(56)

it is clear that the value of v = £ minimizes dispersion in the
direction of cell diagonals. On the other hand, ¥ = ¥ minimizes
the difference between the dispersion along grid lines and in
the direction of cell diagonals, as seen by comparisen to the
power series expansion of the higher-order dispersion relation
along grid lines {(46). Dispersion in the direction of cell diago-
nals for various values of y is plotted in Fig. 2. As expected,
the stencil with -y = £ is essentially non-dispersive in the region
of primary interest with a resolution of at least four grid points
per wavelength.

The ratio between numerical dispersion along grid lines
and along cell diagonals is shown in Fig. 3. By design, the
stencil with v = & is the least anisotropic in the range of
at least four grid points per wavelength. This is corroborated
by the polar plots in Fig. 4, showing the variation in phase
velocity with angle of oriemation for various resolutions.
Note that the figure shows (cg/co)“ to accentuate deviations
from the exact value of unity. As expected, all the schemes
perform identically along grid lines, but behavior in other
directions is determined by the choice of . Differences
among the various cases become more pronounced with
reduced resolution, but in general are not extreme, The two
schemes that stand out are indeed v = % which minimizes
dispersion along diagonals, and hence overall, and y = ¥
which reduces anisotropy.
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EP. The case that is non-dispersive in one dimension (13)
may be treated similarly. In this case there is no dispersion for
waves aligned with the grid and the dispersion relation for
waves in the direction of cell diagonals is

1+2 kh
kth = V2 arc cos (2 __ﬂﬁ)

5 + costkh) (57)

= kh + (kh)'/48 — T(kh)*/7680.

The numerical phase velocity is again obtained directly from
the dispersion relation and the numerical group velocity is

i |7+ 5coskh) (5 + cos(kh))

o 1 + cos(kh) V216 /
This representation is obviously less dispersive for waves that
are oriented with the grid.

(58)

Dispersion in the direction of cell diagonals of the various
formulations is plotted in Fig. 5. Recall that the region of
primary interest is G > 4, a resolution of at least four grid
points per wavelength. Dispersion properties of each scheme
at arbitrary orientations are bounded on one hand by dispersion
along grid lines shown in Fig. 1 and, on the other hand, by
dispersion along cell diagonals shown in Fig. 5. Performance
of the pointwise and weighted-average schemes improves the
farther the orientation of propagation is from the direction of
grid lines. The same holds for the higher-order schemes of
interest withy = 2 and v = . For the (Ep) method the opposite
occurs, so that performance of this scheme is vastly superior
along grid lines. This scheme is higher order only along grid
lines, but it still maintains a high degree of phase accuracy in
all orientations.

The resolution-dependent parameter 8 may be defined so
that the pumerical representation is nen-dispersive for waves
at any given angle of orientation. For example,

g =12 1= cos(V2kw2)
(khY' 2 + cos(V2khi2)

(59)

eliminates dispersion of waves along cell diagonals. Similar
performance was attained in the context of finite element meth-
ods [14]. In general, however, the direction of wave propagation
is not known in advance and there 15 a concern that defining
B3 for any orientation other than along grid lines may degrade
performance on non-uniferm grids, as discussed in the follow-
ing section. Furthermore, grids should be aligned with dominant
directions of propagation to the extent possible. For these rea-
sons it is preferred to maintain dispersion-free discrete solutions
along grid lines.

Numerical dispersion is thus sensitive to the orientation of
wave propagation. The two extreme cases are along grid lines
shown in Fig. 1, and along cell diagonals shown in Fig. 5. The
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FIG. 2. Phase and group vclocities along cell diagonals of higher-order discrete formulations based on generalized Padé approximation.

largest change in dispersion properties possible is thus the ratio
between the two, shown in Fig. 6. Recall that the region of
primary interest is G > 4, a resolution of at least four grid
points per wavelength. For highly resolved phenomena the
performance of all schemes is similar and quite good. As wave
resolution is reduced only the higher-order schemes (with val-
ues of -y shown) retain a low level of anisotropy. Of the other
schemes, approaching the limit of resolution and certainly be-
yond it, the pointwise method is clearly more sensitive to direc-
tion of propagation. For example, at the limit of resolution (&
= 4), there is 8% anisotropy in the pointwise representation
of phase velocity, whereas the anisotropy of other methods is
at most about half that value. This becomes even more pro-
nounced in group velocity.

Figure 7 shows the variation in phase velocity with angle
of orientation of different schemes at various resolutions, For
presentation purposes the figure shows (¢i/c,)*. Note that the
plot for (pT) does not include the case of G = 3 since this
scheme no longer represents propagation at this low resolution,

which, in any event, is outside the region of primary interest
of G > 4. It is clear from these plots that the numerical phase
velocity is less than the speed of sound in the material in all
cases shown except for (wa). Close examination of Fig. 4
indicates that this is true of higher-order methods only with
v = §. With the exception of (gp), all the schemes considered
exhibit superior dispersion behavior along cell diagonals. This
would not hold for higher-order methods with y > ¥, but there
is no apparent motivation to pursue such methods in the first
place. As mentioned, employing (59) eliminates dispersion
along cell diagonals, leading to a version of (Ep) with superior
dispersion behavior along diagonals that is similar to other
schemes in this regard.

4.2. Three Dimensions

Consider a uniform grid in three dimensions that is aligned
with the global axes. A numerical solution in the form of a
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FIG. 3. The ratio of numerical dispersion along grid lines and along cell diagonals for higher-order discrete formulations based on generalized Padé approxi-

matton.

plane wave propagating in a direction that forms an angle ¢
with the z-axis and its projection onto the x-y plane is oriented
at an angle 6 to the x-axis is

¢ = (exp(k™h sin @ cos @) (exp(tkh sin @ sin )/

(60)
{exp(u*h cos @)
so that the generalization of (36) to three dimensions is
— 2 h H
Dot = P (cos(k"hsin gcos 8) — 1)y,
2 o .
D= e (cos(k*h sin @ sin 8) — D¢y, (60

2
D = e (cos(k"h cos @) — 1),

Dispersion relations for the representations that are higher order
in all directions of propagation are based on (30). For waves
aligned with the grid (e.g., 8 = 0 and ¢ = 7/2) this leads to the
higher-order dispersion relation in one dimension (44), along
diagonals of cell faces (e.g., # = 7/4 and ¢ = 7/2) the relation
is the higher-order two-dimensional one (55) and along cell
diagonals (e.g., # = w/4 and ¢ = arc tan\fZ) the power series
expansion is

{kh)® (khy
LY — Sk At — — S T
Rl kh+ (Sy = 4) o0+ Qly = 16— 12) e (62)

Least-squares analysis indicates that the values of y = 2.76
and § = 14.76 minumize the difference between these three
special cases in the range of resolution of interest (G > 4).
This value of v is close to the one that minimized anisotropy
in two-dimensional configurations and we advocate employing
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FIG. 4. Polar plots of anisotropy in (¢}f¢,)* of higher-order discrete formulations based on generalized Padé approximation.

the same value (y = %) in three-dimensional analysis as well,
Substituting this selection into the least-squares analysis yields
§ = 16.94 and we propose the value of I7. This [eads to
differences on the order of 0.01% in the series representation
of the dispersion of the three cases considered in most of the
range of interest.

Overall, high wave resolution or higher-order methods are
required in multi-dimensional configurations if anisotropy is a
concern. Of the methods that are not high order, on grids with
lower resolution, the weighted average representation and its
enhancements are much less anisotropic than the standard point-
wise representation,

5. SPURIOUS REFLECTION AND TRANSMISSION

Reflected and transmitted waves are generated by incident
waves at discontinuities in physical properties. Numerical dis-
persion of discrete formulations gives rise to incorrect represen-
tation of these phenomena at transitions in wave resolution,

5.1. Grid Transition

In a homogeneous material no reflection should occur. How-
ever, changes in grid size alter wave resolution giving rise to
spurious reflection and fransmission due to numerical disper-
sion, phenomena that may be characterized in a manner similar
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FIG. 5. Phase and group velocities of two-dimensional discrete formulations along cell diagonals.

to that of waves at discontinuities in physical coefficients. These
phenomena are well known [15], have been carefully anatyzed
{16], and are numerically demonstrated [17].

Consider a one-dimensional configuration discretized by a
uniforim grid of size A~ to the left of the origin and a uniform
grid of size A" to its right. Due to the transition in grid size at the
origin, an incident plane wave of unit magnitude traveling in the
positive direction with discrete values given in (35) for j < 0
generates spurious transmission such that ¢, # 1 and spurious
reflection of magnitude ¢y — 1. The numerical solution is thus

{(exp(dc’“h*)y + (hy — DIexp(k BTV, j<0,
= (63)

Golexplk* A™YY, j=9,
where the dispersion error is represented by the numerical wave
numbers k" = k*(kh*), and the transmission error is represented
by ¢,. Values ¢y # 1 violate the conservation principle [18].

In particular,

¢ = dyexp(k’ h")
@1 = pexp(ek” b7} — 2isin(k* h™)

(64)
(65}

PT. The pointwise representation (4) of this solution at the
origin yields

0L (tfn — (= (R 6y ¢ = (1 = (kh)2/2)¢e)

h B h
1 (qbo exp(ek® ™) — cos(k* h* ¢y

h ht

i i i (66)
. dy exp(uk” ™) - 2i sin(k" h™) — cos(k* h‘)d)o)
i

_ o ({sink" i*) _sink*RD)\ . sin(k" k)
~ ([ ) g -2 ),
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FIG. 6. The ratio of numerical dispersion along grid lines and along cell diagonals for two-dimensional discrete formulations.

where the second line was obtatned by the dispersion relation '1 1
for the pointwise representation (38). Thus ~ 1 + [(kh)] (_ + ooz (khY (68)

48 576
2V — (k4

(5(kh*)* + 6(kh*y(kh™) + S(kh‘)‘)),

by =
LNV = ki A + VI — (kiYa T 10592
1 1 ——
= 4l LI WA
L+ kY] (16 + 64 (kh) (67) which is valid in the range of resolution in which the weighted-
average formulation represents propagation (along grid lines).
+ _L (5(kh™)* + 6(kh* Y (kA™)? + 5(;{;!-)4)), HO. Transmission for the higher-order representation with
4096 the parameter defined in (15} is
where [(kR)?] = (kRTY* — (kh™)? and (kR = ((KR*Y + (k)2 N ey
2, which is valid in the range of resolution in which the point- M1 - (k736
(1 — (kh™)}12)

wise formulation represents propagation (along grid lines).
WA. Similarly, the weighted-average representation (8) of
the solution (63) at the origin leads to spurious transmission (1 — (kh)412)

VI =12 =~ 1 + [(khy] (i’@i_s (khY? (69)

0= Y2 + VT — (" 12

ARV (KE P16, V1= (k')
(1 — (khH12)
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FIG. 7. Polar plots of anisotropy in (ch/co)* of two-dimensional discrete formulations.

1 T b . EP. The case that is non-dispersive in one dimension (13)
t 3456 (kRTY + kY (kA7) + (KRTY) may be treated similarly. In this case the transmission is

+LU<T>2<:<T>4)

41472 sin(kh” )/~
by = 2 -+ cos(kh™)
which is valid in the range of resolution in which the higher- sin(kh™)/h™  sin(kh*)/h*

order formulation represents propagation (along grid lines). 2 + cos(kh™) 2+ cos(kh™)
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~ 1 + [(kh)*] (ﬁ@
' (70)

1 +y4 N b -
+@((kh Y+ R + (kb)Y

T ST
+64800(Lh) (kh))

which is valid in the range of resolution in which the higher-
order formulation represents propagation (along grid lines).

Spurious transmission of the various formulations at different
wave resolutions is plotted in Fig. 8. In general the sensitivity to
transition in grid size is higher for coarser grids. The weighted-
average representation is significantly superior to the pointwise
scheme on non-uniform grids. The higher-order and exact-
phase formulations offer further improvement.

5.2. Interface of Physical Properties

Discontinuities in physical properties give rise to wave re-
flection and transmission. The relative amplitudes of the re-
flected and transmitted waves depend on the ratio of wave
numbers, which defines the character of the discontinuity. The
numerical representation of these phenomena by finite element
methods was studied in [19].

Consider a generalization of the previous configuration in
which a discontinuity in material properties as well as a jump
in grid size may occur at the origin, so that £~ is the wave
number to the left of the origin and &7 is to its right. An incident
plane wave of unit magnitude traveling in the positive direction
exp(tk~x) for x << 0 generates reflected and transmitted waves,
so that

{exp(r,k"x) + ((0) ~ Dfexp(tk*x), x<0,
= 7n

& (0) exp(ek*x), x=0,
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where

2k

H(0) = pepE (72)

The discrete solution, Eq. {63), where the numerical wave num-
bers are k** = k*(k*h*), again violates the conservation princi-
ple [18]. The following expressions for the transmission are
not amenable to Taylor series expansions which are therefore
omitted. However, the errors are still presented graphically, so
that the performance of the various methods can still be com-
pared.

PT. The pointwise representation (5} of the solution at the
origin yields

o=l (¢. — (= W P Dy by = (1 = (k*hﬁl/z)qso)
h h* h

B sin(k® BH) sm(k’1 h) sm(k” B
([ ) ),

where, again, the dispersion relation for the pointwise represen-
tation (38) is employed. Thus

2kV1— (k h )4
— A+ VT — (R4

(73)

dy = (74)

k1

WA. Similarly, the weighted-average representation (%) of
the solution (63) at the origin leads to

2kV1 = h Y2

¢ = .
— (R 12 + KV — (TR 12

(75)

V1

HO. Transmission for the higher-order representation with
the parameter defined in (15) is

5~ Y1 (V6
—_ — 32
o (I — (kK )12) a6

VUGS | VL GRS
(1— (k- h 12 (1 — (k"h*Y12)

EP. The case that is non-dispersive in one dimension (13}
may be treated similarly. In this case the transmission is

sin(kh™ Y/ (k~h™)
2 + cos(kh™)
_sin(kh Y (k™R 4t sin(kh ) (k*h*Y
2 + cos(kh™) 2 + cos(kh™)

2k

¢y = (77

Physical transmission depends on the ratio of the wave num-
bers. Numerical solutions depend on this parameter and on the
ratto of resolutions. To find out which of the two parameters
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significantly effects the numerical error in transmission consider
the transmission error as a function of ratio of resolutions for
six grid points per wavelength to the left of the origin. This is
plotted for a ratio of the wave numbers equal to unity in Fig.
8 (top). Increasing the ratio by one order of magnitude and by
two yields the behavior shown in Fig. 9. The difference between
these plots is not significant, indicating that the error depends
primarily on the ratio of resolutions. All the representations
have the property that ¢ = ¢(0) if k*h* = k™h™. Again,
superior performance of the weighted-average representation
and its enhancements is evident.

6. LOCAL TRUNCATION ERROR ANALYSIS

The local truncation is the residual left by substituting the
exact solution in the discrete representation. In the following,
sufficient differentiability is assumed for all functions involved.

6.1. Uniform Grids

Consider the one-dimensional constant-coefficient case on a
uniform grid. For the pointwise representation (3)

1) — 2 i -1 2
— He) 7 20 T A0 1 i) + s
_ (‘b"(x‘) + h_2 ¢iv(x_) o (qbw( +)
) 12 ! 180 (78)

+ (7)) + Kid(x) + fx)

=1 ) + 00
BEV RS :

where primes and supericr Roman numerals indicate differenti-
ation by the argument. The second line is obtained by Taylor’s
formula, where x;_; = x~ = x;and x; = x* = x;.,, and the third
line, which follows from the fact that ¢ satisfies the Helmholtz
equation, indicates consistency. The pointwise scheme is thus
second-order accurate.

The weighted-average representation (6) is similar on uni-
form grids

_ &) — 2¢(x) + dlx-)) Eyr P(x;1) + 4d(x) + Plx-))
- h? 6
+f(xj+l) + 4f(xj) +f(-1'j—1)
6
_ (1 N (kg)i) ) — 24;(3,-) Y ) L gy (19)
¢ ey + ) = 20D 3 s

- gy + 0w
129 '
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FIG. 9. Transmission ervor (dy — &(03)/¢(0) at wave number ratios of 10 (top} and 100 for six grid points per wavelength to the left of the origin.

The weighted-average scheme is also second-order accurate.
This order of accuracy is retained in the case of variable coeffi-
cients (7).

For the improved representations (14),

r= Pxjs1) — 2dix) + blx;-) L Plx;) + 4p(x) + ff’(xj-l)
8h? 6 :

+ Sand + £ + f(xn)
3

_ (I + B(kh)l) Plx) — 2d(x) + Plx_)
6 Bh?

F10) = 2f(x) + flx;-110)
3

(80)

+ kiix;)

+ fx) -+

Employing the definition of 8 that leads to the high-order
representation (15) yields

= 2 W) — o)) + OGS,

240 ®h

Justifying its name as a higher-order scheme. Note that if the
source terms were not represented appropriately there would
be second-order terms in the truncation error. The scheme that
is dispersion-free in one dimension {13) has a truncation error
ht . . )

7=EEWW”M+WWWN—PWW®+WW1(@)
If the fourth derivative of the source vanishes the method be-
comes six-order accurate. Furthermore, the truncation error is
zero when all the derivatives of the source from fourth order
and higher vanish.

6.2. Non-uniform Grids

In analyzing method performance on non-uniform grids a
change of variables from physical space to computational space
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is often considered, so that the grid is uniform in the latter
[20]. The order of accuracy of some methods on non-uniform

grids may drop in physical space. Nevertheless, in computa-
tional space it remains unchanged from the order in the uniform

case. To a certain extent grid stretching should reflect variation
of the solution. In this case accuracy in computational space
is representative of the situation. In practice, however, grid

variation is determined by geometric considerations as well.
The following results are thus presented in physical space,
which describes the more general case.

For the pointwise representation (4)

(qs( H)h* o) dlx) — ‘f’( )/E+k2¢(x,)+f(xj)

N2 Lt -2

(83)

W((h+)4¢ (x*) = (W) )) + K oblx) + f(x;)
[[h]] (WY — hh™ + ()

T 60 + =

¢"(x;) + O().

The pointwise scheme is indeed second-order accurate on uni-
form grids, but may drop to first order in the non-uniform case.

Whether the scheme actually drops to first order or not de-
pends on the degree of grid stretching. If

r] = ohtY), p >0, (84)

the stretching is called algebraic [20]. With algebraic stretching
the pointwise scheme retains second-order accuracy. Otherwise
the accuracy drops to first order.

In conirast, for the weighted-average representation (8),

_ (¢(Jq+.> —dly) _ Bix) - ¢(x,-_])) /E
ht h-

2
X (— (b(x) + 20(x))) & (2¢(xJ) + lx- .)))

1{h" _
te (7 (fG5e) + 2F@) + % (2fi) +f(xf—1>))

_ % (( (kh6+)2) d»(xﬁ.)h — $) 55)
. (1 N (kf;-)z) $05) - qb(x,-)) £ Kl
+£5) + == 0 (fla) = () + () = f- )
BES ”];’ LY gy + o0,
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first-order terms cancel out even on non-uniferm grids so that
second-order accuracy is retained in any case. Again, these
results apply to the case of variable coefficients as well.

For the improved representations,

_ [ dly) — Bl _ dx) — plx-)
- ( h h )/ o

kz B+h+
+
a6

(Plxs) + 2d(x)

+ B
Bh
N l (B+h+

(2¢(x) + d)(xj-])))

6 (2f(x H:‘Z) + flx))

Y
+ % (f0x) + 2f(x,-uz))) (86)

_;((ka*h*h*) Pl —
Bh 6 '

. ( - kz,e-h-h-) B(x, 1) - d>(x,))
6 h

i
+ kz(ﬁ’(—’@‘) +f(-xj) + ﬁ (B+h+(f(xj+nz)

— ) + BTRT(f(g) — flx-

$(x)

112)))

For the definition of 8 that leads to the high-order representa-
tion (15),

2
M” (2" (x) — " (x)/4)
(WY — (VPR + WP — B + (Y
- 240 (87)
(R"(x) — F¥(x)/4 + O,

the truncation error is third-order accurate on non-uniform grids
(and, of course, fourth order in the uniform case).

7. CONCLUSIONS

In this work finite difference methods for solving problems
of time-harmonic acoustics are developed and analyzed. The
well-known pointwise representation, Egs. (3) and (19) in one
and two dimensions, respectively, is second-order accurate on
vniform grids. However, accuracy may drop to first order in
the non-uniform case (4) unless sufficiently smooth grid stretch-
ing (84) 1s employed. In multi-dimensional configurations the
representation actually improves the less aligned the propaga-
tion directions are with respect to the grid.
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A weighted-average representation, Eqgs. (6) and (20) in one
and two dimensions, respectively, has the same asymptotic
behavior on uniform grids, but it is less sensitive to low wave
resolution and, more importantly, to direction of propagation
and transition in wave resolution (including material interfaces).
Performance in multi-dimensional configorations again im-
proves for propagation directions that are not aligned with
the grid. In general, anisotropy in numerical representation is
reduced with increased wave resolution. At lower resolution
the weighted-average representation (203 is much less aniso-
tropic than the standard pointwise representation (19). Second-
order accuracy is retained on any non-uniform grid (8) at virtu-
ally no increase in computational cost. These results hold for
variable coefficients as well.

Superior performance is attained by basing the schemes on
a generalized definition of the derivative (10) which incorpo-
rates a resolution-dependent parameter. Improved schemes with
higher-crder accuracy are designed by appropriate definition of
the parameter (15), reducing spurious dispersion and reflection.
Defining the parameter for schemes which are, in some cases,
dispersion-free (13) leads to the same asymptotic behavior with
improved coarse-grid accuracy. Source terms must be repre-
sented accordingly (14) so as not to degrade the higher-order
accuracy. These methods are, in general, fourth-order accurate
on uniform grids and third order in the non-uniform case. The
performance of these schemes in multi-dimensional configura-
tions is superior for any direction of propagation. Their perfor-
mance improves as propagation directions become aligned with
the grid. In principle, grids should thus be aligned with direc-
tions of propagation to the extent possible, further enhancing
the performance of these methods.

Schemes that exhibit higher-order behavior on uniform grids
in all directions in two- and three-dimensional configurations
are derived on the basis of Padé approximation and its general-
ization (22} and (30). The dispersion of these methods (as well
as their spurious reflection and transmission) along grid lines
is identical to that of the higher-order method based on the
generalized definition of the derivative. Dispersion along grid
diagonals in two dimensions is minimized by employing v =
£ which leads to (27). These methods are by far less anisotropic
than all other schemes. The value of v = ¥, in two dimensions
the stencil is {28) and, additionally, & = 17 in three dimensions,
leads to the lowest degree of anisotropy.

It is also possible to develop complementary high-order for-
mulas for a Neumann boundary condition.

HARARI AND TURKEL

In general, wave resolution (kh) should be kept as even as
possibie throughout the grid to minimize spurious reflection
and transmission. Sensitivity to these phenomena is greater on
relatively coarse grids.
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